Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ChemSusChem ; 16(16): e202300516, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37067062

RESUMO

FtpM from Aspergillus fumigatus was the first carboxyl methyltransferase reported to catalyse the dimethylation of dicarboxylic acids. Here the creation of mutant R166M that can catalyse the quantitative conversion of bio-derived 2,5-furandicarboxylic acid (FDCA) to its dimethyl ester (FDME), a bioplastics precursor, was reported. Wild type FtpM gave low conversion due to its reduced catalytic efficiency for the second methylation step. An AlphaFold 2 model revealed a highly electropositive active site, due to the presence of 4 arginine residues, postulated to favour the binding of the dicarboxylic acid over the intermediate monoester. The R166M mutation improved both binding and turnover of the monoester to permit near quantitative conversion to the target dimethyl ester product. The mutant also had improved activity for other diacids and a range of monoacids. R166M was incorporated into 2 multienzyme cascades for the synthesis of the bioplastics precursor FDME from bioderived 5-hydroxymethylfurfural (HMF) as well as from poly(ethylene furanoate) (PEF) plastic, demonstrating the potential to recycle waste plastic.


Assuntos
Furanos , Metiltransferases , Furanos/química , Furaldeído/química , Ácidos Dicarboxílicos/química , Catálise , Plásticos
2.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641370

RESUMO

Pyrithione (2-mercaptopyridine-N-oxide) is a metal binding modified pyridine, the antibacterial activity of which was described over 60 years ago. The formulation of zinc-pyrithione is commonly used in the topical treatment of certain dermatological conditions. However, the characterisation of the cellular uptake of pyrithione has not been elucidated, although an unsubstantiated assumption has persisted that pyrithione and/or its metal complexes undergo a passive diffusion through cell membranes. Here, we have profiled specific membrane transporters from an unbiased interrogation of 532 E. coli strains of knockouts of genes encoding membrane proteins from the Keio collection. Two membrane transporters, FepC and MetQ, seemed involved in the uptake of pyrithione and its cognate metal complexes with copper, iron, and zinc. Additionally, the phenotypes displayed by CopA and ZntA knockouts suggested that these two metal effluxers drive the extrusion from the bacterial cell of potentially toxic levels of copper, and perhaps zinc, which hyperaccumulate as a function of pyrithione. The involvement of these distinct membrane transporters contributes to the understanding of the mechanisms of action of pyrithione specifically and highlights, more generally, the important role that membrane transporters play in facilitating the uptake of drugs, including metal-drug compounds.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Piridinas/farmacologia , Tionas/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética
3.
Microbiology (Reading) ; 167(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33406033

RESUMO

Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico/efeitos dos fármacos , Clorpromazina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Ligantes , Proteínas de Membrana Transportadoras/genética
4.
Antibiotics (Basel) ; 9(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823501

RESUMO

Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...